Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Document Type
Year range
1.
Transboundary and Emerging Diseases ; 2023, 2023.
Article in German | ProQuest Central | ID: covidwho-2298636

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a porcine enteric coronavirus globally, causing serious economic losses to the global pig industry since 2010. Here, a PEDV CH/Yinchuan/2021 strain was isolated in a CV777-vaccinated sow farm which experienced a large-scale PEDV invasion in Yinchuan, China, in 2021. Our results demonstrated that the CH/Yinchuan/2021 isolate could efficiently propagate in Vero cells, and its proliferation ability was weaker than that of CV777 at 10 passages (P10). Phylogenetic analysis of the S gene revealed that CH/Yinchuan/2021 was clustered into subgroup GIIa, forming an independent branch with 2020-2021 isolates in China. Moreover, GII was obviously allocated into four clades, showing regional and temporal differences in PEDV global isolates. Notably, CH/Yinchuan/2021 was analyzed as a recombinant originated from an American isolate and a Chinese isolate, with a big recombinant region spanning ORF1a and S1. Importantly, we found that CH/Yinchuan/2021 harbored multiple mutations relative to CV777 in neutralizing epitopes (S10, S1A, COE, and SS6). Homology modelling showed that these amino acid differences in S protein occur on the surface of its structure, especially the insertion and deletion of multiple consecutive residues at the S10 epitope. In addition, cross-neutralization analysis confirmed that the differences in the S protein of CH/Yinchuan/2021 changed its antigenicity compared with the CV777 strain, resulting in a different neutralization profile. Animal pathogenicity test showed that CH/Yinchuan/2021 caused PEDV-typified symptoms and 100% mortality in 3-day-old piglets. These data will provide valuable information to understand the epidemiology, molecular characteristics, evolution, and antigenicity of PEDV circulating in China.

2.
Vet Res ; 54(1): 27, 2023 Mar 22.
Article in English | MEDLINE | ID: covidwho-2287297

ABSTRACT

Porcine epidemic diarrhoea (PED) caused by porcine epidemic diarrhoea virus (PEDV) has led to significant economic losses in the swine industry worldwide. Histone Cluster 2, H2BE (HIST2H2BE), the main protein component in chromatin, has been proposed to play a key role in apoptosis. However, the relationship between H2BE and PEDV remains unclear. In this study, H2BE was shown to bind and interact with PEDV nonstructural protein 9 (Nsp9) via immunoprecipitation-mass spectrometry (IP-MS). Next, we verified the interaction of Nsp9 with H2BE by immunoprecipitation and immunofluorescence. H2BE colocalized with Nsp9 in the cytoplasm and nuclei. PEDV Nsp9 upregulated the expression of H2BE by inhibiting the expression of IRX1. We demonstrated that overexpression of H2BE significantly promoted PEDV replication, whereas knockdown of H2BE by small interfering RNA (siRNA) inhibited PEDV replication. Overexpression of H2BE led to significantly inhibited GRP78 expression, phosphorylated PERK (p-PERK), phosphorylated eIF2 (p-eIF2), phosphorylated IRE1 (p-IRE1), and phosphorylated JNK (p-JNK); negatively regulated CHOP and Bax expression and caspase-9 and caspase-3 cleavage; and promoted Bcl-2 production. Knocking down H2BE exerted the opposite effects. Furthermore, we found that after deletion of amino acids 1-28, H2BE did not promote PEDV replication. In conclusion, these studies revealed the mechanism by which H2BE is associated with ER stress-mediated apoptosis to regulate PEDV replication. Nsp9 upregulates H2BE. H2BE plays a role in inhibiting apoptosis and thus facilitating viral replication, which depends on the N-terminal region of H2BE (amino acids 1-28). These findings provide a reference for host-PEDV interactions and offer the possibility for developing strategies for PEDV decontamination and prevention.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Chlorocebus aethiops , Porcine epidemic diarrhea virus/physiology , Eukaryotic Initiation Factor-2 , Viral Nonstructural Proteins/genetics , Virus Replication , Protein Serine-Threonine Kinases , Amino Acids , Endoplasmic Reticulum Stress , Apoptosis , Coronavirus Infections/veterinary , Vero Cells
3.
J Gen Virol ; 103(5)2022 05.
Article in English | MEDLINE | ID: covidwho-1831591

ABSTRACT

Infection with the porcine epidemic diarrhoea virus (PEDV) causes severe enteric disease in suckling piglets, causing massive economic losses in the swine industry worldwide. Tripartite motif-containing 56 (TRIM56) has been shown to augment type I IFN response, but whether it affects PEDV replication remains uncharacterized. Here we investigated the role of TRIM56 in Marc-145 cells during PEDV infection. We found that TRIM56 expression was upregulated in cells infected with PEDV. Overexpression of TRIM56 effectively reduced PEDV replication, while knockdown of TRIM56 resulted in increased viral replication. TRIM56 overexpression significantly increased the phosphorylation of IRF3 and NF-κB P65, and enhanced the IFN-ß antiviral response, while silencing TRIM56 did not affect IRF3 activation. TRIM56 overexpression increased the protein level of TRAF3, the component of the TLR3 pathway, thereby significantly activating downstream IRF3 and NF-κB signalling. We demonstrated that TRIM56 overexpression inhibited PEDV replication and upregulated expression of IFN-ß, IFN-stimulated genes (ISGs) and chemokines in a dose-dependent manner. Moreover, truncations of the RING domain, N-terminal domain or C-terminal portion on TRIM56 were unable to induce IFN-ß expression and failed to restrict PEDV replication. Together, our results suggested that TRIM56 was upregulated in Marc-145 cells in response to PEDV infection. Overexpression of TRIM56 inhibited PEDV replication by positively regulating the TLR3-mediated antiviral signalling pathway. These findings provide evidence that TRIM56 plays a positive role in the innate immune response during PEDV infection.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Animals , Antiviral Agents , Interferon-beta/genetics , Interferon-beta/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Swine , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL